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ABSTRACT

The paper is a study of the active control of heat transfer stability in
materials processing using the finite difference/Galerkin method. Using
the benefits of this method (simplicity, clearness e.a.), the paper presents
the reduction of convection process in a fluid layer heated from bellow by
a constant heat flux and cooled from above by convection using a linear
proportional control method assectated to a shadowgraphic measurement

system.

1. Introduction
The active control of heat transfer
stability in fluid layers is an intensively
studied problem. The researchers established
that the onset of Rayleigh-Bénard convection

rivhers the pravitatignel feld 18 resseigibls
for the convection process) could be delayed

using active reactive feedback control
systems [1=3]. it was proved analytically and
experimentally and the process is still treated
in research activities all over the world,

Instead, the active control ol Bénard-
Marangoni, where, in the absence of gravity,
the surface tension is the diving mechanism
[4-6], was analyzed only analytically. after
the process of Bénard-Marangoni convection
was proved by space experiments made on
Apollol3 and Apollo 17 flights.

The reduction or elimination of
Bénard-Marangoni convection process in a
fluid layer heated from bellow with a constant
heat flux and cooled from above by
convection was studied previously [8]. The
numerical method was the Fourier
decomposition of velocity and temperature
fields and it shows the possibility of
eliminating the Bénard-Marangoni convection
using an active reactive feedback control
system. A disadvantage of the method 1s the
big number of (physical and computational)
variables the researcher has to keep in the
computer memory.

Another computational method used
for studying the Bénard-Marangoni

convection of a fluid layer is the finite
difference/Galerkin method [9], a method that is
combining the finite difference decomposition on
the fluid layer height with the Fourier
decomposition on the fluid wavelength direction.
The  method  nroved
calculation advantages: simplicity, less
computational operations, e.a [3, 10, 11].

This paper is analyzing the active contro]
of Bénard-Marangoni convection of a fluid layer
heated from bellow by a ceonstant heat flux and
coonled from above by convection using the finite
difference/Galerkin  method. The method is
associated to a shadowgraphic measurement.
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2, Mathematical formulation
The mass, momentum and energy

conservation equations for the fluid layer are
[12.13]:
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where v' is the velocity field in the horizontal
direction {y), w' is the velocity field in the
vertical direction (z), T' is the temperature field,
tis time, k is the fluid thermal conductivity, p is
the dynamic viscosity, ¢, is the specific heat, p
is the fluid density, py is the fluid density at the

reference temperature Ty, p is the pressure, g is
the gravitational acceleration,
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for velocity, temperature, pressure, length and
time. Here, L is the fluid layer thickness « is
the fluid layer thermal diffusivity, vis the
kinematics viscosity, gq is the heat flux
applied at the lower boundary.
The Boussinesq approximation imposes:
p=pp(l-B(T-Ty)), (5)
with f—the volumetric expansion coefficient.
The equations (4). (5) and the system
of equations (1)+(3). lead to the non-
dimensional conservation equations, (6):(8}:
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Equation {7) can be written, as a function of
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In order to establish the equilibrium
temperature field, 1 am considering [ourier
cosine  series  decomposition for  the
temperature field (T), the vertical (w) and
horizontal (v) velocity fields {3,10]:
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the ratio fluid length/height, N is the number
of elements considered for the Fourier series.
The orthogonal basis of the Galerkin

v). V2 cosla, v
Next, the equations (10+12) are substituted in
the non-dimensional form of conservation
equations (6), (8) and (9). Averaging equation
(6) over y direction, equation (13) is
obtained:

procedure is: 1, V2 sin(a

Equation (14} is obtained averaging
equation {8) over y:

2 d .
D*Ty = S (DW 5 Ty + W DTy ). (14)
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Multiplying equation (8) with

=i cos(ctyy) and averaging over y the following.
the modal tcmperature equanons are obtained:
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Similarly, multiplying equation (%) with

V2sin{e,v) and averaging over v, the modal
veloeity equation is obtained:
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3. Numerical method

The equations (14), {15) and (17) were
discretized using centered finjte differences as
indicated following the example set before
[8.7.10,11]. Consequently, we have to solve
AN+1 systems of equations. Each system of
equation has Nz unknowns, the number of points
that were considerced for the 7 z decomposition.

In order to solve the systems of
equations, the following boundary conditions
were considered:



— the no slip (Jower boundary) and no

penetration (upper and lower boundary) — at the lower boundary, the applied heal (lux is
conditions: praportional to a local shadowgraphic signal;
w =w | =Dw ‘ (19) that signal is giving information on the deviation
M0 M=l Mz=0 (in each point) of the temperature field from the
_ the upper boundary heat transfer equilibrium  value  (in  other words the
coliditions . temperature when only diffusion is responsible
for the heat transport); is the "proportional
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derivative of the vertical velocity, wh,, .
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, D2 and D3 are the first, second and the
third derivative of wj., where 1 is the

corresponding point on the z direction. The
numerical procedure, the initial guess, the
convergence criteria and the relaxation
procedure was described elsewhere(].

4. Numerical results.

Throughout the paper Nz=100, N=4,
Biot number Bi=1.0, Marangoni number
Ma=200.0, Prandtl number Pr=67. the
wavelength =2 464

1 called the working method described
above as the "implicit" method. The study of
the numerical results of the "implicit" method
showed a very sensitive dependence on the
number of points used for the discretization in
the z direction., Nz. Its level determines the
vorticity amplitude and, consequently, the
stability level of the fluid layer. The Nz=100
approach (110 points is the maximum value
allowed by this method) is allowing us, for N=4
is not enough for the precision required by the

Fig.1 and Fig.2 are presenting the
temperature and vortivity fields for the
"implicit” method case, Nz=100, N=4, y=0.

Fig. [ Temperature field, "implicit method".
Nz=100, N=4, y=0.

" ]
0
Fig. 2 Vorticity field, "implicit method".
Nz=100, N=4, y=0.



FASCICLE V

The results obtained for y=0 case to not
verify the results obtained using the classical
method (the Fourier decomposition method
[11]). Therefore, 1 defined a new method, the
"explicit” method, where the boundary
condition (24) can be written as follows:

(33}
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where T, are the temperature values of the
previous iteration step. The equations (28+29)

become:
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This new method 1s allowing Nz values
as high as 280points for N=4. The results
difference can be seen by comparing Fig.2 and
Fig.3. Fig. 3 1s presenting the vorticity field for
the same parameters: Ma=200, Bi=1, 1=2,464,
but for the "explicit method"” solution.

This new method are approaching. for
v=0, the results obtained for the same problem
using only Fourier decomposition technique.
Fig.4 and Fig.5 are presenting the vorticity and
temperature fields for the "explicit" method and
a proportional gain y=10.
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0
Fig. 3 Vorticity field, "explicit method".
Nz=280,N=4, y=0.

Fig. 4 Vorticity field, "explicit method".
Nz=280,N=4, y=10.

2

Fig. 5 Temperature field, "explicit method".
Nz=280, N=4, y=10,

The influence of the proportionality
factor, vy, on the level of vortcity field, and
consequently, the stability of the fluid layer, is
presefited by Fig.6. It shows the decrease of the
vorticity as the proportionality parameter y
increases.

0.21
02050 \

0.2 By

0.195 - —
0 20 40 60 80 100

Fig. 6 Vorticity (§) — proportional gain ()
dependence; "explicit method", x=2.464; Bi=1.
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The influence of the wave number on

the vorticity level is presented by Fig.7 for two
different values of Biot number. Higher values
of the wave number imply lower values of the

vorticity,

keeping all the other parameters

constant.

02f

0.1t Nz

% 5 10 15

Fig. 7 Vorticity (£)-— wavelength (})
dependence, "explicit method";
v =20; Bi=1, Bi=10,

5. Conclusions

The results presented above are driving us
toward the following conclusions:

1.

t

L)

The finite difference/Galerkin method can
be successfully used for the theoretical study
of heat transfer stability in active control of
a fluid layer convection process.

The anticipated advantages of (his method
[3,10,11] proved their uatility for the
analyzed case( we do not need to store the
physical components of the temperature and
velocity ficlds during calculation process
and, consequently, wec can have more
iteration points and a higher precision for
the results: the simplicity of the softwarc
needed 1o solve this problem, the decrease
both af the calculation operations needed to
be done and of the computational time).

The results oblained, the vorticity level,
depend strongly on the number of points,
Nz. This dependence is stronger here than in
the previous methods used for solving this
problem. This is a disadvantage counting
heavily in the economy of the solution.

This problem could be solved using the
"explicit" method suggested in the paper.
Even if this method is presenting itself as

FASCICLE V

being a potential alternative in the study of
active control of convection of a fluid layer
heated from bellow by a heat flux and
cooled from above by convection, it was nol
able to establish the onset of convection
point.

The variation of the vorticity field levels as
a function of wavelength and proportional
gain shows a good trend in the "implicit”
method, the vorticity level decreasing as the

proportional gain and the wavenumber
increase.
These results are emphasizing the

potential this method has for further study of
active control of Bénard-Marangoni convection.

1.

12.

13
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STABILITATEA CAMPULUI TERMIC
LA PRELUCRAREA MATERIALELOR. METODA
"DIFERENTE FINITE/GALERKIN"

Rezumat

Lucrarea este un studiu al controlului activ al stabilitatii termice la
prelucrarea materialelor folosind metoda diferente finite/Galerkin.
Utilizand avantajele acestei metode(simplitate, claritate, etc), lucrarea
prezinta reducerea procesului de convectie intr-un strat de fluid incalzit de
un flux constant la granita infericara si racit prin conveclie la cea
superioara, utilizand o metoda de control proportionala asociata unui
sistem "shadowgrafic” (engl.) de masurare.

STABILITE DE LA CHALEUR TRASFER
DANS LE TRAITEMENT DE MATERIAUX.
METHODE FINIE DE DIFFERENCE/GALERKIN

Résumé

Le papier est une étude de la commande active de la stabilité de
transfert thermique en matériaux traitant en utilisant la méthode des
differences [imie/Galerkin. En utilisant les avantages de cette méthode
(simplicité, clarté e.a.), le papier présente la réduction de processus de
convection d'une couche liguide de chauffage du beuglement par un flux
constant de la chaleur et refroidie de ci-dessus par la convection en
utilisant une méthode de contréle proportionnelle linéaire associée a4 un
systéeme shadowgraphic de mesure,
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